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Outline

• Hyper-Kamiokande overview and status
• Hyper-Kamiokande long-baseline physics sensitivities

• δCP
• Mass Hierarchy
• θ23
• Non-oscillation physics
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Neutrino Oscillation
Neutrino oscillation can be described by the PMNS mixing matrix:

UPMNS =

( 1 0 0
0 +C23 +S23
0 −S23 +C23

)( +C13 0 +S13e−iδCP

0 1 0
−S13e iδCP 0 +C13

)( +C12 +S12 0
−S12 +C12 0
0 0 1

)

(Cij = cos θij , Sij = sin θij)

• Mass Ordering unknown

Precisely measure all parameters to fully
understand neutrino oscillation

• θ12 = 33.6◦ ± 0.8◦ – solar ν’s

• θ23 = 45.6◦ ± 2.3◦

– is θ23 maximal?

• θ13 = 8.3◦ ± 0.2◦ – recent reactor
ν̄e disappearance measurements

δCP unknown → possibility
of CP violation in the lepton sector

→ May be able to help explain the dominance
of matter over anti-matter in the Universe
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Hyper-Kamiokande Long-Baseline
Program

• MW-class neutrino beam from upgraded J-PARC MR accelerator
• Produce primarily νµ or ν̄µ beam, 2.5◦ off-axis

• Neutrino flux and systematic errors constrained by upgraded ND280
detector and new Intermediate Water Cherenkov Detector

• Gigantic Hyper-Kamiokande water Cherenkov detector
• Measure νµ → νe appearance and νµ → νµ disappearance oscillations
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The Hyper-Kamiokande Collaboration

HK collaborators (February 2020)

The Hyper-Kamiokande
collaboration consists of
>400 researchers from
20 countries

5 / 24



Hyper-Kamiokande Status

• Access/approach tunnel excavation reached the center of the future
HK main cavern’s dome June 2022

• Excavation of the circular tunnel around the dome has started 6 / 24



J-PARC Neutrino Beam

• Slam high-intensity 30GeV proton beam into 90-cm carbon target
• Focus outgoing hadrons in 3 electro-magnetic focusing horns

• Switch between ν- or ν̄-mode by changing the horn polarity
• Pions decay to muons and νµ’s in 100-m-long decay volume
• Stop interacting particles in beam dump; neutrinos continue on to
near and far detectors

• Monitor >5GeV muon beam by Muon Monitor in beam dump
• Constrain proton interactions by external hadon production
measurements (NA61, EMPHATIC) to precisely simulate the flux

• Upgrades to J-PARC accelerator underway now towards 1.3+MW
proton beam power for HK 7 / 24



ND280 Near Detector Complex
• Suite of Near Detectors 280 m from the neutrino
source

• Monitor the neutrino beam stability and direction
• Constrain the neutrino flux
• Precisely measure neutrino cross sections

• Upgrades to ND280 underway now
• Improve acceptance for high-angle and backwards

tracks to improve systematic error constraint
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Intermediate Water Cherenkov Detector

• 1 kilo-ton scale water Cherenkov detector located ∼1 km from the
neutrino source

• Position of instrumented part of the detector can be moved in
∼50 m shaft to make measurements at different off-axis angles

• Take advantage of pion decay kinematics to probe neutrino
interactions as a function of neutrino energy

• Measurements to address uncertainties on neutrino-nucleus
scattering modeling for Hyper-K

• Measure relationship between neutrino energy and final state particles
• Precisely measure the νe/ν̄e cross section
• Measure neutron production in neutrino-nucleus scattering

• Now finalizing site selection + optimizing detector design
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Hyper-Kamiokande Detector
• 188kton fiducial mass water Cherenkov

detector (∼8x larger than SK)

• Sub-GeV ring-imaging capability

• Excellent νe/νµ particle ID capability

• 20k 50cm Box and Line Dynode ID PMTs

• Multi-PMTs for directional information,
improved spacial and timing resolution

• Scheduled to turn on in 202750cm Hyper-K PMT
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Hyper-Kamiokande Oscillation Analysis
Method

• Based on T2K oscillation analysis method
• Simultaneous fit of HK far detector νe reconstructed energy vs

angle + νµ reconstructed energy spectra
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Hyper-K Long-Baseline νe Spectra
ν-Mode Beam ν̄-Mode Beam
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• Sensitivity to δCP comes mainly from νµ → νe appearance –
number of events in neutrino- vs antineutrino-modes

• Number of expected νe-like events (assuming 10 years at
1.3MW×107seconds, 1:3 ν:ν̄, NH, sin2 θ13 = 0.0218, δCP = 0) :

νµ → νe ν̄µ → ν̄e Beam νµ Beam ν̄µ Beam νe Beam ν̄e NC Total
ν-Mode, νe CCQE-like 2252.51 11.70 6.53 0.23 326.15 12.34 130.30 2739.76
ν̄-Mode, νe CCQE-like 257.26 796.55 3.24 4.99 147.70 236.90 177.33 1623.97
ν-Mode, νe CC1π-like 207.36 0.23 4.49 0.14 34.46 0.29 10.65 257.63
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Hyper-K Long-Baseline νµ Spectra
ν-Mode Beam ν̄-Mode Beam
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• Sensitivity to sin2 θ23 and ∆m2
32 comes mainly from νµ

disappearance – depth and energy of oscillation dip
• Number of expected νµ-like events (assuming 10 years at

1.3MW×107seconds, 1:3 ν:ν̄, NH, sin2 θ23 = 0.528,
∆m2

32 = 2.509× 10−3 eV2) :
νµ ν̄µ νe νµ → νe ν̄e ν̄µ → ν̄e NC Total

ν-Mode, νµ CCQE-like 8583.80 479.91 0.24 2.32 0.01 0.01 282.99 9349.30
ν̄-Mode, νµ CCQE-like 4399.40 7688.44 0.28 0.33 0.24 0.42 285.92 12375.02
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HK Long-Baseline Systematic Error Model
Three systematic error models shown here:

• T2K 2018 (after the near detector fit)
• Improved systematics, calculated by scaling the T2K-2018 error
model assuming increased run time + sensitivities from
ND280-upgrade and IWCD

• Scaling uncertainty on flux, cross-section and SK detector
systematics by 1/

√
N, where N = 8.7 is the relative increase in

neutrino beam exposure from T2K to Hyper-K
• Studies from ND groups used to apply a further constraint to the

cross-section model uncertainties:
• A factor of 3 reduction on all non-quasi-elastic uncertainties
• A factor of 2.5 reduction on all quasi-elastic uncertainties
• A factor 2 reduction on all anti-neutrino uncertainties
• A reduction in neutral current uncertainties to the ∼10% level
• The νe/ν̄e cross-section ratio error was varied from ∼3.6% to 1% to

assess its impact
• No parameter was allowed to have an uncertainty of less than 1%

• Statistics only (no systematics)
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HK Long-Baseline Systematic Errors

• For current sensitivity studies - base HK long-baseline systematics
on T2K errors

• More robust HK systematic error model under development now

T2K 2018 errors:
1-Ring νµ-Like 1-Ring νe -Like

Error source ν-Mode ν̄-Mode ν-Mode
CCQE-like

ν̄-Mode
CCQE-like

ν-Mode
CC1π-like

ν-
Mode/ν̄-
Mode
CCQE-like

Flux + xsec 3.27% 2.95% 4.33% 4.37% 4.99% 4.52%
Detector+FSI 3.22% 2.76% 4.14% 4.39% 17.77% 2.06%

All syst 4.63% 4.10% 5.97% 6.25% 18.49% 4.95%

Improved HK errors:
1-Ring νµ-Like 1-Ring νe -Like

Error source ν-Mode ν̄-Mode ν-Mode
CCQE-like

ν̄-Mode
CCQE-like

ν-Mode
CC1π-like

ν-
Mode/ν̄-
Mode
CCQE-like

Flux + xsec 0.81% 0.72% 2.07% 1.88% 2.21% 2.28%
Detector+FSI 1.68% 1.58% 1.54% 1.72% 5.21% 0.97%

All syst 1.89% 1.74% 2.56% 2.53% 5.63% 2.45%
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Impact of Systematics on the δCP
Measurement
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True normal ordering (known)
Hyper-K preliminary

• Sensitivity to exclude sin δCP ̸= 0 for different true values of δCP
assuming the MO is known

• Significant change in sensitivity to δCP depending on the systematic
error model – particularly sensitive to the error on the νe/ν̄e ratio
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Fraction of δCP Resolved
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True normal ordering (known)
Hyper-K preliminary

• Can resolve non-zero δCP for ∼60% of possible true values of δCP at
5σ and ∼80% at 3σ assuming the optimistic error model if the MO
is known

• Significant change in sensitivity to δCP depending on the systematic
error model – particularly sensitive to the error on the νe/ν̄e ratio
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Resolving the Mass Ordering with HK
Atmospheric Neutrinos

True Normal Ordering
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• Combined fit of Hyper-K long-baseline and atmospheric neutrinos
• Atmospheric neutrinos can help to resolve the MO 18 / 24



Resolving the Mass Ordering with HK
Atmospheric Neutrinos

True Inverted Ordering
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• Combined fit of Hyper-K long-baseline and atmospheric neutrinos
• Atmospheric neutrinos can help to resolve the MO 19 / 24



Error on δCP Measurement
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True normal ordering (known)
Hyper-K preliminary

• Can make a precise measurement of δCP –
δCP = −90◦ ± 19◦, δCP = 0◦ ± 6.5◦ assuming optimistic error model

• Significant change in sensitivity to δCP depending on the systematic
error model – particularly sensitive to the error on the νe/ν̄e ratio
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Measurement of ∆m2
32
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True normal ordering (known)
Hyper-K preliminary

• 1σ resolution of ∆m2
32 as a function of true sin2 θ23 –

∼ 9× 10−6 eV2 1σ error on ∆m2
32

• Systematics-limited measurement
• (Long-baseline fit only shown here – further sensitivity improvement
when including atmospheric neutrinos) 21 / 24



Measurement of θ23 Octant
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True normal ordering (known)
Hyper-K preliminary

• Wrong θ23 octant can be excluded at 3σ for true sin2 θ23 < 0.47
and true sin2 θ23 > 0.55

• Systematics-limited measurement
• (Long-baseline fit only shown here – further sensitivity improvement
when including atmospheric neutrinos) 22 / 24



Hyper-Kamiokande Beam Non-Oscillation
Physics Sensitivity

• Precision measurements of various important neutrino cross sections
at the HK near detectors

• Upgraded ND280 has unique capabilities to make precise
measurements

• Intermediate Water Cherenkov Detector allows for precision
interaction measurements at different off-axis angles → different
beam energies

• Also aim for a search of non-standard/new physics in the HK near
detectors :

• Sterile neutrinos, heavy neutrinos (heavy neutral leptons), Lorentz
violation, etc...
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Conclusion
• Excavation for the Hyper-Kamiokande detector is ongoing –
detector will turn on in 2027

• Essential to constrain systematic errors to achieve maximum
sensitivity

• Hyper-Kamiokande long baseline neutrino oscillation
measurements have sensitivity to:

• Exclude CP conservation at 5σ for ∼60% of δCP parameter space
• Measure δCP with precision of < 20◦ (better, depending on the true

value of δCP)
• Determine the Mass Ordering to >3σ
• Achieve 3σ exclusion of wrong θ23 octant for sin2 θ23 < 0.47 or

sin2 θ23 > 0.55

• Sensitivities shown here based on T2K analysis tools
• Various improvements to T2K analysis since 2018 not implemented

yet
• Now developing dedicated HK analysis tools
• Development of robust systematics model based on HK detectors

underway 24 / 24



Backup Slides
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Hyper-K Long-Baseline νe Spectra
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Number of expected νe-like events (assuming 10 years at
1.3MW×107seconds, 1:3 ν:ν̄, NH, sin2 2θ13 = 0.1, δCP = 0) :

νµ → νe ν̄µ → ν̄e Beam νµ Beam ν̄µ Beam νe Beam ν̄e NC Total
ν-Mode, νe CCQE-like 2252.51 11.70 6.53 0.23 326.15 12.34 130.30 2739.76
ν̄-Mode, νe CCQE-like 257.26 796.55 3.24 4.99 147.70 236.90 177.33 1623.97
ν-Mode, νe CC1π-like 207.36 0.23 4.49 0.14 34.46 0.29 10.65 257.63
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Hyper-K Long-Baseline νµ Spectra
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Number of expected νµ-like events (assuming 10 years at
1.3MW×107seconds, 1:3 ν:ν̄, NH, sin2 2θ13 = 0.1, δCP = 0) :

νµ ν̄µ νe νµ → νe ν̄e ν̄µ → ν̄e NC Total
ν-Mode, νµ CCQE-like 8583.80 479.91 0.24 2.32 0.01 0.01 282.99 9349.30
ν̄-Mode, νµ CCQE-like 4399.40 7688.44 0.28 0.33 0.24 0.42 285.92 12375.02

27 / 24



Measurement of θ23 Octant
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True normal ordering (known)
Hyper-K preliminary

• Wrong θ23 octant can be excluded at 3σ for true sin2 θ23 < 0.47
and true sin2 θ23 > 0.55

• Systematics-limited measurement
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